Sustaining Livestock Production and Clean Water on Rangelands

Ken Tate, Rob Atwill, Leslie Roche, Randy Dahlgren and a lot of colleagues...

UC Davis & UC Cooperative Extension

rangelands.ucdavis.edu

CA Rangelands

- 57 M acres.
- 22 M acres privately owned.
- \$3 B annual sheep & cattle industry.
- 1000's of plant and animal species.
- 80% surface waters derived from or stored in.

In the 1990's, concerns about...

- Microbial pollutants *Cryptosporidium, E. coli*
- Sediment erosion
- Stream Temperature stream shade, tail-water
- Nutrients nitrogen and phosphorus

Rangeland Watershed Program

A 25 yr proactive partnership to improve water, range, and ranch enterprises. (Agencies, Ranchers, UC, NGOs).

Science

Practices

and a start of the second

Regulation

Policy

Planning

Education

WQ protection over the past 25 year

USDA – Practice Cost Share (2009-2014)

- \$302 M in rangeland WQ practice implementation
- 7,385 contracts with landowners
- 5.7 M acres contracted

Over 100 research papers

- Pollutant sources on grazing lands
- Transport, fate, mitigation of these pollutants
- WQ conditions on rangelands

**Use pointer to explore clickable features. Beta Version 1.0

- Livestock can increase microbial concentrations
- *Cryptosporidium* in cattle not infectious to humans

- Livestock can increase microbial concentrations
- *Cryptosporidium* in cattle not infectious to humans

- Can have rapid inactivation of microbes
- <10% of pollutant load mobilizes from fecal deposits

Key Findings

Cryptosporidium eggs die in one day of 78 F air temperature in direct sun.

Key Findings

E. Coli are trapped in fecal pat or soil within 1 yard down slope during runoff.

Vegetative Buffer

Non-point source pollution as a result of overland flow during rainfall events is a common transport mechanism for pathogens. Pathogens in fecal material can certainly be directly deposited in a water body by an animal, but livestock and wildlife spend more hours grazing and resting on the surrounding watershed than they do drinking or cooling in a creek or stream. The proximity of contaminated fecal material is a key factor in determining whether or not the pathogen will be able to reach water- Our research has demonstrated that, for indicator E.coli, more than 90% of the bacteria was retained within a fecal pat or trapped within 1 foot downslope. More>>

The whole range is a microbial filter...

>90% of pollutants trapped at fecal pat

70-99% trapped each additional 1 yard

30-70% trapped in riparian areas

fecal pat

Similar findings for: Pharmaceuticals and Hormones

- Livestock can increase microbial concentrations
- *Cryptosporidium* in cattle not infectious to humans
- Can have rapid inactivation of microbes
- <10% of pollutant load mobilizes from fecal deposits
- A toolbox of effective WQ protection practices

Over 60% of cattle fecal loading is near livestock attractants in summer

Management Implication We can position salt, feed, water to attract cattle and pathogens to "safe" areas – not near streams or runoff areas

- 10 years of data from 3 annual rangeland watersheds - Stocking rate ("heavy", "moderate", no grazing)

Grazing Intensity	Indicator <i>E. coli</i>
No Grazing	310
Moderate Grazing	425
Heavy Grazing	1250

Grazing IntensityIndicator E. coliNo Grazing310Moderate Grazing425Heavy Grazing1250

- 1. Background is not 0!
- 2. EPA Standards are not always attainable (100, 126, 235).

Range management that reduces water pollution risk

Moderate	Manage livestock	Manage wet
stocking	distribution	season
Set stocking rate in balance with forage production and site resiliency to reduce impacts to soil and vegetation.	Distribute grazing and waste across the landscape, and actively manage grazing intensity in critical hydrologic zones.	Distribute livestock to resilient soils and non- critical hydrologic zones during saturated conditions.

Prescribed grazing, cross fencing, off-stream drinking water, targeted supplemental feeding, riparian pastures, herding, vegetative buffer strips

Public Lands Grazing & Water Quality

COMPREHENSIVE WATER QUALITY SURVEY

- 12 USFS public lands grazing allotments, 5 National Forests.
 320,000 acres
- 155 stream collection sites, monitored monthly during grazingrecreation period (Jun-Nov, 2011).
 - Key Grazing Areas
 - Recreation Areas
 - Areas with No Concentrated Use Activities
- Total of 743 water samples collected
 - Fecal Indicator Bacteria: Fecal coliform, *E. coli*
 - TN, NO₃-N, NH₄-N, TP, PO₄-P

Water Quality Benchmarks

Percentage of 743 stream *water samples* exceeding benchmarks

	Benchmark	Overall (% of 743)	Key Grazing Area (% of 462)	Recreation Area (% of 125)	No Concentrated Use Activities (% of 156)
marks	FC > 20 cfu/100ml	50	48	46	58
3ench	FC > 200 cfu/100ml	10	10	6	13
tory F	<i>E. coli</i> > 100 cfu/100ml	9	8	7	11
kegula	<i>E. coli</i> > 235 cfu/100ml	3	3	3	4
	NO ₃ -N > 300 μg/L	0	0	0	0
	TP > 100 μg/L	2	2	2	<1
	PO ₄ -P > 50 μg/L	<1	1	0	0

Water Quality Benchmarks

Percentage of 743 stream *water samples* exceeding benchmarks

Benchmark	Overall (% of 743)	Key Grazing Area (% of 462)	Recreation Area (% of 125)	No Concentrated Use Activities (% of 156)
FC > 20 cfu/100ml	50	48	46	58
FC > 200 cfu/100ml	10	10	6	13
<i>E. coli</i> > 100 cfu/100ml	9	8	7	11
<i>E. coli</i> > 235 cfu/100ml	3	3	3	4
NO ₃ -N > 300 μg/L	0	0	0	0
TP > 100 μg/L	2	2	2	<1
PO ₄ -P > 50 μg/L	<1	1	0	0

Roche et al. 2013. PLOS ONE.

Mean FIB Concentrations

Benchmark	Key Grazing Area (n = 462)	Recreation Area (n = 125)	No Concentrated Use Activities (n = 156)
FC (cfu 100/ml)	87 ± 12 a	55 ± 9 b	90 ± 12 a
<i>E. coli</i> (cfu 100/ml)	42 ± 6 a	29 ± 7 b	43 ± 8 a

No significant differences in FIB concentrations between key grazing areas and areas of no concentrated use activities.

Roche et al. 2013. PLOS ONE.

Mean FIB Concentrations

Benchmark	Key Grazing Area (n = 462)	Recreation Area (n = 125)	No Concentrated Use Activities (n = 156)
FC (cfu 100/ml)	87 ± 12 a	55 ± 9 b	90 ± 12 a
<i>E. coli</i> (cfu 100/ml)	42 ± 6 a	29 ± 7 b	43 ± 8 a

FIB concentrations significantly lower at recreation areas.

Roche et al. 2013. PLOS ONE.

CA 2010 CWA Sec 303d List of all impaired waterbodies – all sources

All WQ Impairments (n=7,294)

Grazing = 4% of listed WQ impairments in CA

All WQ Impairments (n=7,294)

Grazing a *Potential* Source (n=324)

What are the pollutants of concern?

Grazing as a *potential* source (n=324)

Pollutant of concern	% of 324 303d listings
Microbial	29
Nutrients	23
Sediments	16

2010 303d Impairments

WQ Summary

- Water quality on extensively grazed rangelands and forests is often high.
- Management can certainly create risk to water quality, or it can protect water quality.
- Rangelands have great capacity to attenuate pollutants from livestock and other ranch activities – work with that potential.
- A large toolbox of tested, feasible practices exists.

UC Next Steps

Synthesis of Current Science

- Peer-reviewed synthesis papers
- Series of 1-2 page policy/informational briefs
- One-stop-shopping online information page

UC Next Steps

Synthesis of Current Science

- Peer-reviewed synthesis paper
- Series of 1-2 page policy/informational briefs
- One-stop-shopping online information page
- Scope of grazing as WQ impairment
 - Analysis of SWRCB 303d listings
 - Online reporting of analysis and results
 - Peer reviewed policy paper

UC Next Steps

Synthesis of Current Science

- Peer-reviewed synthesis paper
- Series of 1-2 page policy/informational briefs
- One-stop-shopping online information page
- Scope of grazing as WQ impairment
 - Analysis of SWRCB 303d listings
 - Online reporting of analysis and results
 - Peer reviewed policy papers
- Participate in grass-roots "ranch water quality partnership"
 - Review and renewal of the 25 year partnership
 - Build on existing successes and plan for the next 25 years

Rangeland Watershed Laboratory http://rangelandwatersheds.ucdavis.edu