Pronghorn fawn survival on the northern Carrizo Plain

Diego Johnson^{1,2}, Matt Simes¹, Chris Lowrey¹, Kathleen Longshore¹

¹USGS, Western Ecological Research Center ²Universtiy of Nevada, Las Vegas

Pronghorn distribution in California and North America

(Calif. Dept. of Fish & Game 2012; Wildlife Management Institute 2001)

Current pronghorn distribution and status in California

(Calif. Dept. of Fish & Game 2012; Wildlife Management Institute 2001)

Current pronghorn distribution and status in California

- All southern populations declining
- Significant decline for the Carrizo Plain

(Calif. Dept. of Fish & Game 2012; Wildlife Management Institute 2001)

The Carrizo Plain:

The Carrizo Plain:

The Carrizo Plain:

Population decline: → **340** pronghorn translocated (1987-1990) Atascadero Number of pronghorn 200 NCP 150 **CPNM** 100 50 2004 2007 2002 2005 2009 2010 2011 2012 2008 2001 Year Guadalupe

(Maher 1994, Cal Fish & Game 2012)

Santa Maria

Small populations and the Allee Effect

Small populations and the Allee Effect

The Allee effect on the Carrizo Plain

Topaz Solar Farms

- Pronghorn locations(2000 2013)
- Topaz Solar (Current)
- □ Topaz Solar (Planned)
- Major roads
- Mitigation Lands

Why study fawns?

- Fawns
 - Recruitment critical for population recovery
 - High mortality due to predation (10-20 days of age)
- Adults
 - Difficult and expensive to work with
 - Low mortality from predation and mild winter climate

Objectives

- 1. Measure fawn survival and determine causes of mortality.
- 2. Examine relationship between fawn habitat selection and survival.

Objectives

- 1. Measure fawn survival and determine causes of mortality.
- 2. Examine relationship between fawn habitat selection and survival.

Collaring Fawns

GPS collars

- Lightweight (80 g)
- Expandable
- Detach (~ 60 days)
- Collect locations (2 hrs.)
- VHF tracking
- Mortality sensor

Locating fawns

- ⇒ Pregnant female:
 - Bulging stomach
 - Grouped with other adults
 - Getting up and down

- ⇒ Female with fawns:
 - Flat stomach
 - Isolated from other adults
 - Alert

Minimizing Impact/Disturbance

<15 min. processing time</p>

Captured at 1 - 5 days of age

Captured after reunion period

Large secure net

Equipment stored in local vegetation

- Survivals
- **Mortalities**
- Mitigation lands
- **Project Lands**

Monitoring status of fawns

Collared Fawns:

VHF signal (collar still attached)

Ear tag (after collar detaches)

Monitoring status of Fawns

Uncollared Fawns:

Visual observation

- Collared sibling
- Pelage/markings on mother
- General daily location

Survivals:

> 60 days = survival
(90% of mortality occurs at < 20 days of age)

(Gregg et al. 2001)

Mortalities:

- Field necropsies
 - 1. Predation?
 - 2. Type of predator

- Laboratory necropsies
 - 1. Health related?
 - 2. Additional information

Predator sightings and fawning areas (April –July 2013)

Survival compared to other studies...

Location	Year	# born	# survived
Northern CP	2013	25	8 (32%)
CPNM	2011	11	4 (36%)
CPNM	2010	12	5 (42%)
CPNM	2009	22	3 (14%)
Across range*	1976 - 1999	995	293 (29%)

(*O'Gara and Shaw, 2004)

$$(z = -0.18, p = 0.86)$$

 $(z = -0.10, p = 0.92)$

Cause of mortality...

10 Necropsies

Northern Carrizo Plain:

7 (70%) Evidence of predation (Coyote)

3 (33%) No evidence of predation (Cause unknown)

Cause of mortality...

10 Necropsies

Northern Carrizo Plain:

7 (70%) Evidence of predation (Coyote)

3 (33%) No evidence of predation (Cause unknown)

Compared to....

*Other populations:

76% Evidence of predation (Coyote, Eagle, Bobcat)

24% No evidence of predation (Starvation or disease)

^{*}O'Gara & Shaw 2004

Survival curves for pronghorn fawns

Objectives

- 1. Measure fawn survival and determine causes of mortality.
- 2. Examine relationship between fawn habitat selection and survival.

Habitat at different scales:

Micro-habitat

- Fawn selects bedsite
- < 100 m distance
- Subtle habitat characteristics

Macro-habitat

- Doe selects birth site and general fawning habitat
- large scale landscape features

Measuring micro-habitat:

- 1. Vegetation height
- 2. Vegetation type (grass, forb, shrub, bare ground)
- 3. Visibility at adult height (1 m)
- 4. Visibility at fawn height (0.5 m)

~ 1,000 Fawn locations from GPS collars

Measuring micro-habitat:

- 1. Vegetation height
- 2. Vegetation type (grass, forb, shrub, bare ground)
- 3. Visibility at adult height (1 m)
- 4. Visibility at fawn height (0.5 m)

- 136 Fawn locations
- 132 Random locations

Measuring macro-habitat:

- Generated using a GIS (Geographic Information System)
- Distance to...
 - 1. Solar development (as of June 2013)
 - 2. High use roads (Hwy 58, Soda Lake Rd)
 - 3. Low use roads (dirt roads)
 - 4. Ephemeral drainages

Habitat model results: Micro-habitat features

Note: Vegetation height and type were not significant

Habitat model results:

Macro-habitat variables

Variable	Distance		
Solar development			
Minor roads			
Water sources			
Major roads			
Ephemeral drainages			

Conclusions and Discussion

1. Fawn survival

- Similar to CPNM and other populations
- However Low raw numbers of recruited individuals

- High annual variability common
- Vulnerable to environmental and demographic stochasticity

Conclusions and Discussion

1. Causes of mortality

- Predation similar to CPNM and other populations
- However...
 - Importance of predation increases for small populations in marginal habitats
 - Mean survival time low (6.75 days)

Conclusions and Discussion

2. Habitat

- Low availability of vegetative concealment
- Low forage opportunities for adults (high % bare ground)

Ephemeral drainages likely provide habitat for

both fawns and adults.

	Mean vegetation height	Mean adult visibility	Mean fawn visibility	Mean vegetation composition			
				Forb	Grass	Shrub	Bare ground
Fawn	3.6 cm (0.2 cm)	97.8 % (0.8 %)	97.7 % (0.9	17.7 % (0.3	32.1 % (0.7	0.0 % (0.0 %)	50.1 % (0.9
locations	3.0 cm (0.2 cm)	97.8 /0 (0.8 /0)	%)	%)	%)	0.0 /8 (0.0 /8)	%)
Random	5.0 (0.2)	04.2.0/ (2.2.0/)	92.0% (2.7	18.7 % (0.7	34.7 % (1.0	0.2.0/ (0.1.0/)	46.3 % (1.3
locations	5.9 cm (0.3 cm)	94.2 % (2.2 %)	%)	%)	%)	0.3 % (0.1 %)	%)

